

GWL BMS2405

User manual

http://www.ev-power.eu EV-Power.eu managed by i4wifi a.s. (member of GWL/Power group) Prumyslova 11, CZ-10219 Prague 10, CZECH REPUBLIC (EU) phone: +420 277 007 500, fax: +420 277 007 529, email: export@i4wifi.cz

Table of contents

1	IN	TRODUCTION	3
2	BN	IS SYSTEM CONNECTOR	4
2	2.1	ON / OFF control	
	2.2	Ignition output	
2	2.3	ANALOG OUTPUT	
2	2.4	OPTIONAL INPUT / OUTPUT	
2	2.5	CHARGE RELAY OUTPUT	
2	2.6	CHARGE DETECT INPUT	
2	2.7	CHARGE RELAY	
2	2.8	BATTERY BALANCING ALGORITHM	
3	CE	LLS CONNECTIONS	8
3	8.1	CONNECTION ORDER FOR COMPLETE BMS	
3	3.2	CELLS CONFIGURATION	
4	PR	OCEDURE AFTER BMS CONNECTION1	0
5	BN	AS STATES1	1
4	5.1	DISCHARGE	1
5	5.2	Charging1	
5	5.3	Error codes	2
5	5.4	LCD	3
6	MO	ONTAGE OF CURRENT SENSOR13	3
6	5.1	CURRENT SENSITIVITY	5
7	ST.	ATE OF HEALTH1	5
7	.1	SOH CALCULATION	5
7	.2	SOH TO DEFAULT VALUE	5
8	LO)GS1(5
8	.1	HISTORY LOGS	7
	5.2	SOC HISTORY	
	3.3	STATUS LOGS (OPTIONAL)	
9		RIAL INTERFACES	
0			
).1).2	CONTROL INTERFACE	
	9.2 9.3	CONFIGURATION (PROGRAM) INTERFACE	
10	F	PARAMETERS24	4
1	.1	LIST OF PARAMETERS	4

1 Introduction

Battery balancer is an advanced battery management solution:

- for Li based battery cell,
- that is measuring and monitoring battery cells during the complete charge and discharge cycle,
- that protect cells against under-voltage or over-voltage,
- that is balancing during the whole duration of the charging cycle,
- that is capable of measuring charge in/out from battery (state of charge SOC). For SOC measuring is required current sensor.
- That is capable calculating State of health of cells

For complete understanding and usage of BMS use also:

- datasheet for Emsiso BMS 2405 and
- user manual for device configuration tool, that is used for changing parameters of BMS and analyzing/monitoring variables/logs inside BMS.

2 BMS system connector

On BMS front side there is 10 pin connector that is signed as "SYSTEM".

Pin No.	Pin Name	Voltage range[V]	Max. current[A]
1	Ignition input	1590	-
2	Ignition output	1590	5A
3	Charger detect input	1590 This is only for special chargers. Look at the chapter detect input.	-
4	Charge relay output	12	0.3A
5	Ground(connected to -BAT1)	-	-
6	Analog output	Look at the chapter analog output.	0.02A
	Optional input	1290	-
7	Optional output	12V or ignition input voltage	0.25A
8	Current sensor input	05	-
9	Ground of current sensor	-	-
10	Current sensor supply	5	0.3A

2.1 ON / OFF control

Power ON is triggered with:

- Ignition input = 1 (Voltage between 15 and 90V) or
- Charger is connected

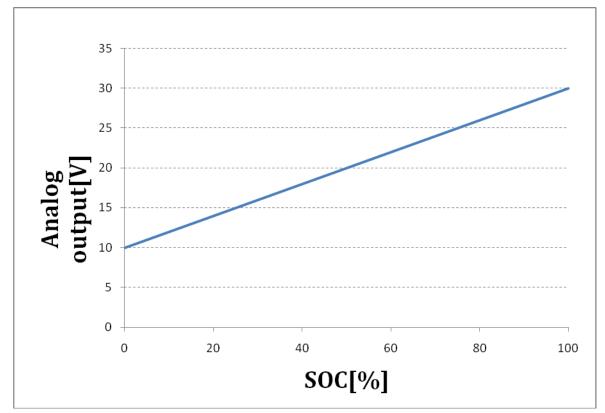
Power OFF is triggered when:

- Ignition = 0. (Voltage 0)
 - If charger is connected then BMS stays turned on.
- Charger is disconnected
 - \circ when BMS doesn't recognize charger for 30 s
- Minimum cell voltage is below value of parameter <u>Shut down voltage</u>.
 - If BMS on power up detects that voltage cell is too low, then BMS will be turned off after 10 s. In this 10 s period user has an option to delay turning off for 10 min with sending any valid command to it. This give user opportunity to check which cell is too low.

2.2 Ignition output

Ignition output is used for connecting controller, DC/DC converter or other smaller loads.

Ignition output logic:


- Ignition output is always disabled, if BMS is turned off.
- Ignition output is enabled if:
 - Ignition input = 1 and
 - If parameter <u>Turn on controller during charging</u> is 1 during charging.

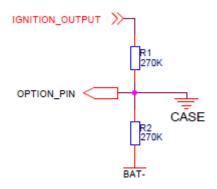
Maximum allowed current on ignition output is 5A. Voltage on ignition output is always equal to ignition input.

2.3 Analog output

Analog output range:

- For BMS HW version 1.2 [5V to battery voltage] and
- For BMS HW version above 1.2 [0-10V]

Analog output is active only if ignition output is enabled. Analog output shows value of SOC.


Figure 1: Analog output vs. SOC

In example above, parameter <u>Analog voltage at SOC=0</u> is set to 10V. Parameter <u>Analog voltage at SOC=100</u> is set to 30V.

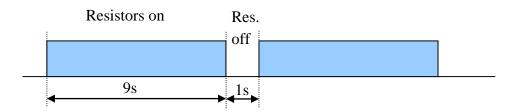
2.4 Optional input / output

Pin 7 can be used configured in three different modes:

- Output
 - $\circ~$ Output set when SOC > 20. Output voltage is selected with jumper on PSB between 12V or BAT+.
 - \circ Output reset when SOC < 20
- Input (function is not implemented)
- Analog input
 - If optional pin is configured as analog input, then pin is used to measure voltage between case and BAT±. Pin must be connected to case of BMS or electric car (look picture below). If voltage is not on middle of ignition output voltage, then BMS goes to error mode.

2.5 Charge relay output

Pin 4 can be used for connecting external charging relay.


2.6 Charge detect input

Pin 3 can be used only for charger that has special output to signal charging on or off.

2.7 Charge relay

Charge relay allows charging currents up to 30A. Connect charger minus directly to -Bat1, not to the BMS. Charger plus connect to charger relay pin CHARGER IN.

2.8 Battery balancing algorithm

Battery balancer functionality:

- Balancing algorithm is enabled during charging cycle
- Balancing algorithm is enabled when battery is full.

- Each battery cell resistor is enabled if cell voltage is higher than minimum voltage for voltage that is presented with parameter <u>Cell voltage difference</u>
- Balancing current is 500mA.

3 Cells connections

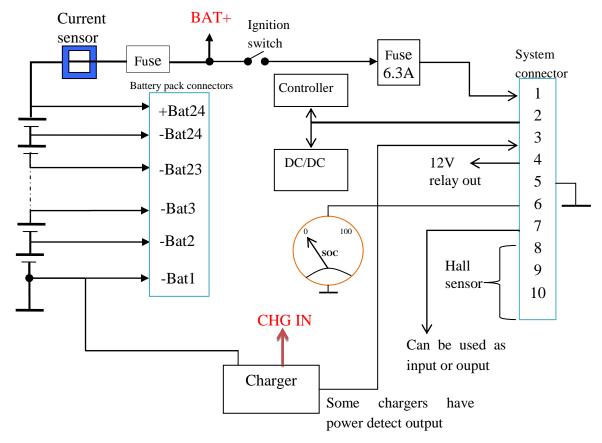


Figure 2: 24 cells schematic

3.1 Connection order for complete BMS

Connect in next order:

- Connect 20 pins cell connector,
- Connect 8 pins cell connector,
- Connect system connector,
- Connect BAT+ and
- Connect charger
- Connect serial cable if you want to communicate with device (PROGRAM connector)
- Connect control cable if you want connect other devices to BMS (BMS sending status to PC or eDrive controller) (CTRL. connector)

When disconnect the connectors use reverse order.

BMS2405 User Manual

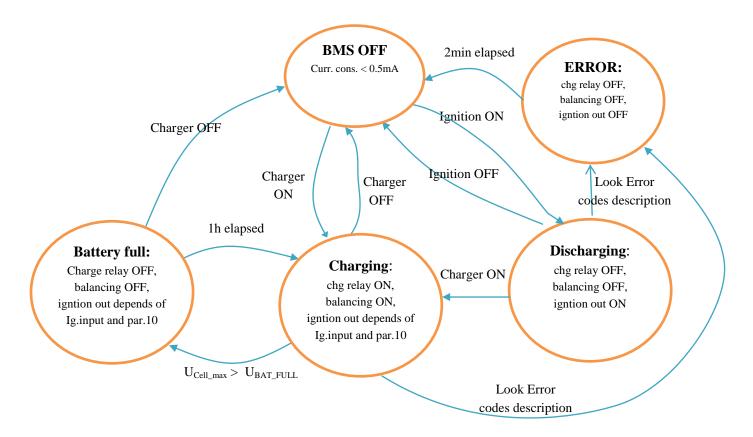
3.2 Cells configuration Always first connect the two connectors to BMS.

Battery pack		20	pin (conn	ector	- be	low s	ee w	hich	CON	NECT	or f	PIN co	onne	ct to	whic	h CE	LL PC	DLE				8 p	oin co	nneo	tor		
configuration	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	1	2	3	4	5	6	7	8
6 cells	NC	NC	NC	NC	NC	NC	NC	*1	*2	*3	NC	NC	NC	+6	-6	-5	-4	-3	-2	-1	NC	NC	NC	NC	NC	NC	NC	NC
7 cells	+7	+7	+7	NC	NC	NC	NC	*1	*2	*3	+7	-7	-6	-5	-5	-5	-4	-3	-2	-1	NC	NC	NC	NC	NC	NC	NC	NC
8 cells	+8	+8	+8	NC	NC	NC	NC	*1	*2	*3	+8	-8	-7	-6	-6	-5	-4	-3	-2	-1	NC	NC	NC	NC	NC	NC	NC	NC
9 cells	+9	+9	+9	NC	NC	NC	NC	*1	*2	*3	+9	-9	-8	-7	-6	-5	-4	-3	-2	-1	NC	NC	NC	NC	NC	NC	NC	NC
10 cells	+10	+10	+10	NC	NC	NC	NC	*1	*2	*3	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	NC	NC	NC	NC	NC	NC	NC	NC
11 cells	-11	+11	+11	NC	NC	NC	NC	*1	*2	*3	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	NC	NC	NC	NC	NC	NC	NC	NC
12 cells	-11	-12	+12	NC	NC	NC	NC	*1	*2	*3	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	NC	NC	NC	NC	NC	NC	NC	NC
13 cells	-11	-11	-11	-12	-13	+13	+13	*1	*2	*3	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	NC	NC	NC	NC	NC	NC	+13	+13
14 cells	-11	-12	-12	-13	-14	+14	+14	*1	*2	*3	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	NC	NC	NC	NC	NC	NC	+14	+14
15 cells	-11	-12	-13	-14	-15	+15	+15	*1	*2	*3	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	NC	NC	NC	NC	NC	NC	+15	+15
16 cells	-11	-12	-13	-14	-15	-16	+16	*1	*2	*3	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	NC	NC	NC	NC	NC	NC	+16	+16
17 cells	-11	-12	-13	-14	-15	-16	-17	*1	*2	*3	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	NC	NC	NC	NC	NC	NC	+17	+17
18 cells	-11	-12	-13	-14	-15	-16	-17	*1	*2	*3	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	NC	NC	NC	NC	NC	NC	+18	-18
19 cells	-11	-12	-13	-14	-15	-16	-17	*1	*2	*3	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	+19	+19	+19	+19	-19	-18	-17	-17
20 cells	-11	-12	-13	-14	-15	-16	-17	*1	*2	*3	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	+20	+20	+20	+20	-20	-19	-18	-18
21 cells	-11	-12	-13	-14	-15	-16	-17	*1	*2	*3	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	+21	+21	+21	+21	-21	-20	-19	-18
22 cells	-11	-12	-13	-14	-15	-16	-17	*1	*2	*3	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	+22	+22	+22	-22	-21	-20	-19	-18
23 cells	-11	-12	-13	-14	-15	-16	-17	*1	*2	*3	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	+23	+23	-23	-22	-21	-20	-19	-18
24 cells	-11	-12	-13	-14	-15	-16	-17	*1	*2	*3	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	+24	-24	-23	-22	-21	-20	-19	-18

Notes:

*1	GND for NTC (not connected if NTC not used)	-1	Negative (minus) terminal of cell number 1
*2	Temp sensor 2 (not connected if not used)	+7	Positive (plus) terminal of cell number 7
*3	Temp sensor 1 (not connected if not used)	NC	- Not Connected

4 Procedure after BMS connection


- 1. Connect the BMS to PC with provided serial cable.
- 2. Open device configuration tool or other terminal (hyperterminal, teraterm..)
- 3. Ignition to 1.
- 4. By default cell number is 24. If you use different cell number, the BMS goes into error. In 10s after power up you have to send any valid command so that BMS stays alive. Otherwise the BMS is turned off, because of cell undervoltage.
- 5. Set number of cells (parameter <u>Number_of_cells</u>) and set date (command <u>SET DATE</u>).
- 6. Restart (ignition to 0 and back to 1) the BMS.
- 7. If cells are correct connected and all cells have voltage higher as 2.5(default <u>Shut down voltage</u>) then BMS shows number between 0..9. If the BMS is still in error, then send command <u>BMS_INFO</u> (inside 10s after power up). In first line, the BMS return description of error. Possible errors:
 - One of cell is not connected or bad connected
 - Cell voltage bellows 2.5V(check this cell also with V-meter)
 - HW internal error(contact info@emsiso.com)
- 8. If current sensor is not used, skip next point.
- 9. Enable current sensor (parameter <u>Current sensor enable</u>) and set current sensitivity (look chapter <u>Current sensitivity</u>). Restart the BMS.
- 10. If the BMS goes into error state, check reason with command <u>BMS INFO</u>:
 - Current sensor is wrong connected or
 - Voltage at zero current is not correct parameter <u>Sensor voltage at zero current</u> (could be in case that you use different sensor as recommended HASS 50-S).
- 11. Compare cells voltages with values measured of **BMS INFO** (command)
 - Set date (command <u>SET_DATE</u>).
 - Example: set_date day,month,year,hour,min,seconds
 - set_date 8,12,2011,21,35,54
 - Connect charger (SOC value will be wrong at this point, until battery is not filled to full, then BMS will set SOC = 100)

Command **<u>BMS_INFO</u>** return values of next counters:

- Number of charging cycles,
 - Counter is incremented when max. cell voltage is above value of par. Battery full voltage
- Number of deep discharge cycles,

- Counter is incremented when min. cell voltage is bellow value of par.
 <u>Shut Down voltage</u> and BMS is also turned off
- Total battery charge out and
- Charge out from last charging

5 BMS states

5.1 Discharge

- This state will occur when charger is disconnected and user starts ignition
 - Ignition output is enabled, analog output shows SOC.
- Depending the events that occurs later in this state, BMS reacts differently:
 - \circ Ignition to 0
 - BMS turns off
 - o Charger is connected
 - BMS goes to charge state
 - Error occurred
 - BMS goes to error state

5.2 Charging

- This state will occur when charger is connected
 - Balancing algorithm is enabled;
 - Ignition output is enabled if parameter <u>Turn_on_controller_during_charging</u> is 1.
- Depending the events that occurs later in this state, BMS reacts differently:
 - Charger is disconnected
 - BMS turns off
 - Battery is full
 - BMS is still balancing, but charger relay is disconnected. After 1 hour charger relay is once more connected.
 - \circ Error occurred
 - BMS goes to error state
 - Cells temperatures higher as parameter Range of ext.temp. max.value or bellow parameter Range of ext.temp. - min.value
 - Charging is disabled until temperature of external sensors is out of range
 - When external temp. sensors are not connected is charging disabled until minimum BMS internal temperature is bellow Range of ext.temp. min.value

5.3 Error codes

- If error code occurs, then BMS will be turned off after 2min. This give user opportunity to check what went wrong BMS_INFO.
 - o Current offset
 - Wrong value of parameter Current sensor offset
 - Wrong use of hall sensor
 - Wrong current sensor orientation
 - Change sensor orientation
 - Cell under voltage
 - Turn off BMS and then connect charger
 - o Communication with balancers
 - If this error occurs during charging, then the reason can be noise of charger. In this case on charger output connect splitting ferrite (farnell code: 74271222). Charger outputs (plus and minus) have to passed through ferrite.
 - Charger detect input
 - Charger detect input is active but no voltage detect on charger input

5.4 LCD

On power up all segments are showing for 1second.

LCD shows	Explanation
0-9	SOC value (9: SOC value between 90-100)
$C \rightarrow (0, 0)$	C:charging
C ↔(0-9)	0-9: SOC value
	F:battery full
	0-9: balancing voltage (difference between maximum cell and
F ↔(0-9)	minimum cell voltage subtracted for value of parameter Cell
	voltage difference)
	Battery is full and BMS doesn't recognize charger any
•	more(Ucell < (Ucharger $+0.6$)). BMS goes into sleep mode.
	BMS turns off when charger is disconnected.
Е	E: error
4	Character 't' blinking. Inhibit charging until cells temperatures
L	are out of range.

Dot on 7-segment LCD is blinking if date is not set.

6 Montage of current sensor

Current sensor has to be montage so that it returns positive value in case of charging battery (current flows into battery). Emsiso recommended HASS 50-S. Use only current sensors with next properties:

- Supply voltage = 5V and
- Output voltage is not higher as 3.3V.

Figure 3: Current sensor HASS 50-S

Current sensor is connected to 10 pin system connector. Pin 1 of current sensor HASS 50-S is not connected.

Tabela 1:Current sensor HASS 50-S pinout
--

Current sensor	System connector
2 (output)	8
3 (GND)	9
4 (5V)	10

This current sensor is able to measure up to 200A DC current. Increase accuracy of current measurement with more loops of wire through current sensor.

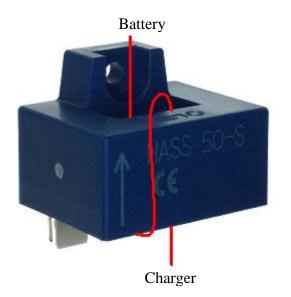


Figure 4: Two loop of wire through current sensor

Max. DC current[A]	Number of turns
200	1
100	2
50 (only if charger current is lower as 15A)	3

For HASS-50S is needed Molex connector 22-01-2045 and Molex pins 08-50-0032.

6.1 Current sensitivity

```
Parameter <u>Current sensor sensitivity</u> depends of number of turns:
Current sensor sensitivity[uV/A] = 12500uV/A * number of turns
```

7 State of health

State of health (SOH) is relationship between measured (actual) capacity and nominal capacity. An SOH of 100% means that the actual capacity matches nominal capacity (parameter <u>Battery</u> <u>capacity</u>). Read value of SOH with command <u>BMS_INFO</u> or read parameter <u>SOH</u>.

Actual capacity is stored in SOC logs when:

- SOC jump occurs or
- U_{min_cell} is bellow shutdown voltage

If parameter <u>Use SOH by SOC calculation</u> is enabled then value of SOH is used for battery capacity calculation:

 $Q_B = Q_{Nom} * SOH / 100$

;wher

Q_B [Ah] = battery capacity used in SOC measurement
 Q_{Nom}[Ah] = parameter <u>Battery capacity</u>
 SOH[%] = value is 100 % if parameter <u>Use SOH by SOC calculation</u> is disabled

7.1 SOH calculation

SOH calculation is always executed on power up and is stored as parameter <u>SOH</u>.

• SOH calculation from logs when U_{min_cell} was bellow shutdown voltage (at least 3 logs are needed):

 $SOH[\%] = Q_{meas}/Q_{Nom} * 100$

;wher

 Q_{meas} = used charge until U_{min_cell} was above shutdown voltage

• SOH calculation from SOC jumps (at least 3 logs are needed):

 $SOH[\%] = Q_{meas} / Q_{Nom} * 100 + SOC value after jump$

;wher

 Q_{meas} = used charge until SOC jump was occurred

 $Q_{Nom} = parameter$ <u>Battery capacity</u>

7.2 SOH to default value

To set back SOH value back to default is needed:

- Erase SOC history logs with command Erase SOC history
- Set parameter <u>SOH</u> to 100%

8 LOGS

Log type	Maximum number of logs					
History logs	30	00				
SOC history logs	10					
Status logs(optional)	HW 1.2	3000				
Status logs(optional)	HW above 1.2	6000				

History and SOC history logs are stored into EEPROM. Status logs are stored into flash. When no more space for log is, then oldest log is replaced with new log.

8.1 History logs

Log is stored before BMS is shutting down. Logs can be read over configuration serial interface. Command <u>HISTORY START</u> starts printing history logs from newest to oldest log. To stop printing send <u>HISTORY STOP</u>. Command <u>HISTORY DES</u> print history log syntax:

Date, U_{TOTAL}, U_{MIN_VOLT}, U_{INX_MIN_VOLT}, U_{MAX_VOLT}, U_{INX_MAX_VOLT}, T, SOC, Q_{BAT}

Label	Description	Unit
Date	Day.motnh.year hour:minute:seconds	
U _{TOTAL}	Total battery voltage	mV
U _{MIN_VOLT} ,	Minimum cell voltage	mV
U _{INX_MIN_VOLT}	Index of minimum cell voltage	-
U _{MAX_VOLT}	Maximum cell voltage	mV
U _{INX_MAX_VOLT}	Index of maximum cell voltage	-
Тс	Temperature of external sensor. The BMS return -273 if temperature sensor is not found.	С
SOC	Battery capacity in percent. This value is set to 0 when U_{MIN_VOLT} is lower as value of parameter <u>Shut down voltage</u> . SOC is equal 100 when battery is full. SOC is decreased to value of parameter <u>Decrease SOC</u> if min. cell voltage is lower as value of parameter <u>Decrease SOC</u> <u>because min. cell is low</u> . SOC is always 100% if current sensor is not present.	%
Q _{BAT}	Actual battery capacity [0: battery full, 40000: battery is total empty (for 40Ah battery)]. This counter is reset battery is full.	mAh

Table 2: History log syntax

8.2 SOC history

Log is stored when:

- SOC jumps to value of parameter *Decrease SOC* if min. cell voltage is lower as value of parameter *Decrease SOC when min. cell is lower as* and actually SOC value if higher as value of parameter *Decrease SOC*.
- $\bullet \quad U_{min_cell} \, is \, bellow \, shutdown \, voltage$

Command <u>SOC_HISTORY</u> sends all SOC history logs. SOC history syntax: *Date*,*Q*_B,*Type*

Table 3: SOC history

Label	Description	Unit
Date	Date when jump SOC jump is occurred. (Day.motnh.year hour:minute:seconds)	
Q_B	Used charge until SOC jump.	mAh
Туре	 S: log is stored when U_{min_cell} was bellow shutdown voltage J: log is stored at SOC jump 	

8.3 Status logs (optional)

For status logs must be flash soldered, otherwise the BMS return error on all 3 status log commands. Log is stored each second if BMS is in discharge mode. If charger is connected is streaming interval defined by parameter <u>Data streaming interval</u>. Command <u>LOG START</u> starts printing logs from newest to oldest log. Stop printing with <u>LOG STOP</u>. Command <u>LOG STOP</u> sends log syntax.

$U_{TOTAL}, U_{MIN_VOLT}, U_{INX_MIN_VOLT}, U_{MAX_VOLT}, U_{INX_MAX_VOLT}, I_B, T_B, T_C, SOC, Q_{BAT}, Power, Uc[0], Uc[1]...Uc[Number of cells]$

Label	Description	Unit
U _{TOTAL}	Total battery voltage	mV
U _{MIN_VOLT} ,	Minimum cell voltage	mV
U _{INX_MIN_VOLT}	Index of minimum cell voltage	-
U _{MAX_VOLT}	Maximum cell voltage	mV
U _{INX_MAX_VOLT}	Index of maximum cell voltage	-
I _B	Battery current. Positive value when current flows into battery.	А
T _B	Temperature of BMS.	С
T _C		С
SOC	Look table <u>history log</u>	%
Q _{BAT}	-	mAh
Power	Look table Contol data	%
Uc[0]	Cell 1 voltage	mV
Uc[1]	Cell 2 voltage	mV
		••
Uc [Number of cells - 1]	Voltage of top cell in the stack	mV

Table 4:Status logs syntax

9 Serial interfaces

The BMS has two serial interfaces: control and configuration interface. Over control interface the device sends data to PC or the controller. Configuration interface is used for adjusted of parameter, streaming data and read logs.

9.1 Control interface

Control interface is galvanic isolated RS232 interface. Over control interface the BMS sends data to PC or the controller. The data are sent each second. The BMS does not accept any command over this interface. Control interface serial settings:

- Baud Rate: 115200
- Parity: None
- Data Bits: 8
- Stop Bits: 1
- Flow Control: None

DATA SYNTAX

- String when ignition goes to 1 = BMS2405 r n
- Each line is terminated with r.

U_{TOTAL}, U_{MIN_VOLT}, U_{INX_MIN_VOLT}, U_{MAX_VOLT}, U_{INX_MAX_VOLT}, I_{BAT}, T, SOC, CHG, Q_{BAT}

Table 5:Control data syntax

UTOTALTotal battery voltagemVUMIN_VOLT,Minimum cell voltagemVUINX_MIN_VOLTIndex of minimum cell voltage-UMAX_VOLTMaximum cell voltagemVUINX_MAX_VOLTIndex of maximum cell voltage-IBATBattery current. Positive value when current flows into battery.mATTemperatureCSOCLook table History log%CHGCharge present 1charge is connected 0.charger is not connected (always send 0 if par. Turn on controller during charging is set to 2)-QBATActual battery capacity [0: battery full, 40000: battery is total empty (for 40Ah battery)]. This counter is reset when UMAX VOLT is higher as parameter Battery fullmAh	el	Unit
UINX_MIN_VOLTIndex of minimum cell voltage-UMAX_VOLTIndex of minimum cell voltagemVUMAX_VOLTIndex of maximum cell voltage-IBATBattery current. Positive value when current flows into battery.mATTemperatureCSOCLook table History log%CHGCharge present 1charge is connected 0charger is not connected (always send 0 if par. Turn on controller during charging is set to 2)-QBATActual battery capacity [0: battery full, 40000: battery is total empty (for 40Ah battery)]. This counter is resetmAh	TAL	mV
UMAX_VOLTMaximum cell voltagemVUINX_MAX_VOLTIndex of maximum cell voltage-IBATBattery current. Positive value when current flows into battery.mATTemperatureCSOCLook table History log%CHGCharge present 1charge is connected 0charger is not connected (always send 0 if par. Turn on controller during charging is set to 2)-QBATActual battery capacity [0: battery full, 40000: battery is total empty (for 40Ah battery)]. This counter is resetmAh	N_VOLT,	mV
UINX_MAX_VOLTIndex of maximum cell voltage-IBATBattery current. Positive value when current flows into battery.mATTemperatureCSOCLook table History log%CHGCharge present 1charge is connected 0charger is not connected (always send 0 if par. Turn on controller during charging is set to 2)-QBATActual battery capacity [0: battery full, 40000: battery is total empty (for 40Ah battery)]. This counter is resetmAh	X_MIN_VOLT	-
IBAT Battery current. Positive value when current flows into battery. mA T Temperature C SOC Look table <u>History log</u> % CHG Charge present - 1charge is connected 0charger is not connected (always send 0 if par. - Turn on controller during charging is set to 2) QBAT Actual battery capacity [0: battery full, 40000: battery mAh is total empty (for 40Ah battery)]. This counter is reset mAh	AX_VOLT	mV
battery.CTTemperatureCSOCLook table <u>History log</u> %CHGCharge present 1charge is connected 0charger is not connected (always send 0 if par. Turn on controller during charging is set to 2)-Q _{BAT} Actual battery capacity [0: battery full, 40000: battery is total empty (for 40Ah battery)]. This counter is resetmAh	X_MAX_VOLT	-
SOC Look table <u>History log</u> % CHG Charge present - 1charge is connected 0charger is not connected (always send 0 if par. - Turn on controller during charging is set to 2) QBAT Actual battery capacity [0: battery full, 40000: battery mAh is total empty (for 40Ah battery)]. This counter is reset mAh		mA
CHG Charge present - 1charge is connected 0charger is not connected (always send 0 if par. - Turn on controller during charging is set to 2) QBAT Actual battery capacity [0: battery full, 40000: battery mAh is total empty (for 40Ah battery)]. This counter is reset mAh		C
Icharge is connected0charger is not connected (always send 0 if par.Turn on controller during charging is set to 2)QBATActual battery capacity [0: battery full, 40000: batterymAhis total empty (for 40Ah battery)]. This counter is reset	2	%
0charger is not connected (always send 0 if par. Turn on controller during charging is set to 2)QBATActual battery capacity [0: battery full, 40000: battery is total empty (for 40Ah battery)]. This counter is reset	G	-
Turn on controller during charging is set to 2)QBATActual battery capacity [0: battery full, 40000: battery is total empty (for 40Ah battery)]. This counter is reset		
QBATActual battery capacity [0: battery full, 40000: battery is total empty (for 40Ah battery)]. This counter is resetmAh		
is total empty (for 40Ah battery)]. This counter is reset		
	лт	mAh
when U _{MAX VOLT} is higher as parameter <u>Battery</u> full		
voltage.		
Propose Power Propose power is calculated from parameters Ucell %	pose Power	%
power decreasing and Ucell power decreasing gain		
Propose is decreased also if temperature of external		
sensor is out of range(parameter		
Temp.range min value and Temp. range-		
<u>max value</u>)		

9.2 Propose Power

Propose power is calculated from minimum cell voltage of battery stack and external temperature. If minimum cell voltage below value of parameter <u>Ucell power decreasing</u> then the BMS starts decreasing of power. Also if temperature is out of range the BMS decreasing propose power.

In example are used next settings of parameters (temperatures are in range):

- Ucell min[mV] power decreasing = 2900
- Power decreasing gain[%/V] = 90

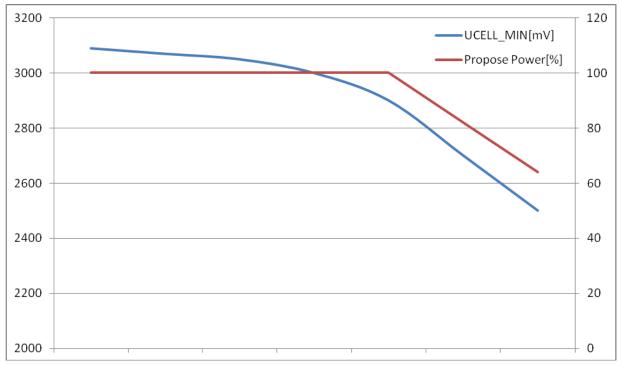


Figure 5: Power decreasing because cell voltage

9.3 Configuration (program) interface

Configuration interface is used for setting of parameters, reading of logs, monitoring of battery and FW upgrade. Use next settings of serial port on your terminal program (HyperTerminal, TeraTerm...):

- Baud Rate: 115200
- Parity: None
- Data Bits: 8
- Stop Bits:
- Flow Control: None

1

The device accepts text commands, which are terminated with CR (hex code 0D). Optional LF characters are ignored.

The device accepts one command at time. All responses begins with "OK," or "ERROR,"

The device does not distinguish between lower and uppercase characters. All input data is converted to lowercase characters before command parsing.

10 Parameters

Parameters are stored in EEPROM. All parameters are 32 bit numbers (integer). Set parameter with command *par_set* and get parameter value with command *par_get*.

10.1 List of parameters

Print table below with command *par_print*.

Par. ID	Parameter Name	Parameter description	Def. value	Min. value	Max. value
0	Number of cells	Number of connected cells	24	6	24
1	Battery full voltage[mV]	When max. cell reach this voltage then BMS goes to battery full state	3600	3000	4000
2	Range of ext.temp. - min.value	If external temperature in range between min. and max. temperature then propose power = 100%	5	-20	30
3	Range of ext.temp. - max.value	If external temperature in range between min. and max. temperature then propose power = 100%	60	0	80
4	Power decr. because ext.temp[%/C]	Decrease proposes power is temperature is out of range.	5	0	100
5	Charge detect	Enable / disable	0	0	1

Table 6: List of parameters

	input active	charger input. Only for			
	input active	chargers with charger			
		detect output.			
		Inverted / non-inverted			
6	Charge detect	charger input. Only for	0	0	1
	input inverted	chargers with charger			
		detect output.			
7	Current sensor	Enable / disable	0	0	1
	enable	current sensor	Ŭ	Ŭ	-
8	Current sensor	Current sensor	12500	0	100000
0	sensitivity[uV/A]	sensitivity	12500	U	100000
9	Sensor voltage at	Current sensor voltage	2500	0	5000
9	zero current[mV]	at zero current	2300	0	3000
		0the controller is			
		turned on only if			
		ignition is on			
		1the controller is			
		always turned on			
10	Turn on controller during charging	during charging(drive			
		is not possible for	0	0	2
		Emsiso controllers)	Ŭ	Ŭ	-
		2the controller is			
		always turned on			
		•			
		during charging and			
		also drive is possible for Emsiso controller			
11	Shut down	If min. cell voltage is	2500	2000	2200
11	voltage[mV]	under this value then	2500	2000	3200
		BMS is turned off			
		Interval for streaming			
12	Data streaming interval[s]	to PC and store data			
		into flash. For values	2	1	600
		bigger as 10 accept	_	-	500
		only values that are			
		divided by 10.			
13	Temperature limit	This parameter is set in	50	30	70
15	while balancing[C]	EMSISO Lab.	50	50	70
		If cell voltage is bigger			
1.4	Cell voltage	of min. cell voltage for	F	F	500
14	difference[mV]	value of this	5	5	500
		parameter, then enable			
		parameter, men enable			

15	Battery capacity[mAh] Decrease SOC when min. cell is lower as	discharge resistor on this cell. Used only in charging mode. Battery capacity. Decrease SOC to value of par. 17 if min. cell voltage is lower as this value and SOC value	40000 2850	100	100000
17	Decrease SOC to	is higher as par. 17 Look description of parameter 16.	15	0	100
18	Analog display voltage[mV](SOC=0)	Analog display voltage when SOC is zero.	0	0	90000
19	Analog display voltage[mV] (SOC=100)	Analog display voltage when SOC is 100%.	0	0	90000
20	Ucell min[mV] power decreasing	When Ucell_min is lower as this value then BMS starts decreasing of propose power.	3000	2000	3600
21	Power decreasing gain[%/V]	Power decreasing gain[%/V]	100	0	300
22	Cell internal resistance[mΩ]	Cell internal resistance. $U_{CELL} = U_{MEASURED} - R_{CELL} * I_B$	3	0	100
23	Use SOH by SOC calculation	Enable / disable use of state of battery health by SOC calculation	1	0	1
24	State of health(SOH) value[%]	State of health according to nominal capacity	100	0	100
25	Option pin definition	0-used as output 1-input 2-analog input	0	0	2

http://www.ev-power.eu EV-Power.eu managed by i4wifi a.s. (member of GWL/Power group) Prumyslova 11, CZ-10219 Prague 10, CZECH REPUBLIC (EU) phone: +420 277 007 500, fax: +420 277 007 529, email: export@i4wifi.cz

